


















(a) Three major components in the QFS architec-

ture

(b) Message exchanges among Chunk Servers and the RM for RS(6, 3) recon-

struction using PPR

Figure 5: (a) QFS architecture and (b) PPR protocol timeline

Figure 6: Protocol for LRU cache. Updates are piggybacked

with heartbeat messages

the RM reschedules the reconstruction process with a new

repair plan.

6.3 IO pipelining, caching, and efficient use of memory

Overlapping disk IO with network transfer: Disk IO

(read/write) time is another dominant component in the

overall reconstruction time. Aggregation Chunk Servers that

had posted downstream requests (e.g., S2, S4, S6), read

different chunks from disk and wait8 for data transfer from

their downstream peer Chunk Servers to complete. Then

they apply the aggregating XOR operation and send the

result to further upstream servers in the tree. To increase

parallelism, aggregation Chunk Servers schedule IO-reads

in parallel with data transfer from network.

Caching: We attempt to further reduce the impact of IO-

read time by introducing an in-memory caching mechanism

in Chunk Servers, as described in Section 4.4. When choos-

ing k out of the remaining k + m − 1 Chunk Servers for

a reconstruction operation in m-PPR protocol, RM gives

higher priority to hot chunks but tries to avoid very-hot

chunks in order to minimize the impact on application per-

formance. However, for multiple simultaneous reconstruc-

tions, we found that making sure that these reconstructions

use disjoint servers has a greater benefit than cache-aware

8 Because network transfer of a chunk usually takes longer than IO time.

server assignment, since in general data centers are con-

strained by network resources.

6.4 Implementation details

The choice of a codebase: We implemented our technique

with QFS [5] written in C++. Among several alternatives, we

chose QFS because of its simpler architecture and reason-

able popularity in the community. However, our PPR tech-

nique is general enough to be applicable to other widely used

erasure coded storage systems. Specifically the architecture

of HDFS with erasure coding [3] is almost identical to that

of QFS, and therefore PPR is directly applicable. In addi-

tion, our technique can also be applied to Ceph [1], another

popular distributed storage system that supports erasure cod-

ing. In Ceph, clients use a pseudo-random mapping func-

tion called CRUSH [49] to place and access data chunks,

rather than relying on a centralized meta server. Nonethe-

less, it does have a centralized entity, called ceph monitor

(ceph-mon) that knows the layout of Object Storage Devices

(OSDs) (equivalent to Chunk Servers in QFS). ceph-mon is

responsible for checking the health of each OSD, letting the

newly joined OSDs know the topology, etc. Thus, we can

augment such an entity with RM to enable PPR. Moreover,

we can also augment any OSD with RM function, since

all OSDs know where a given chunk is (or will be) located

based on the pseudo-random mapping function.

Changes made to the codebase: To implement PPR, we

have made the following changes to the QFS codebase. First,

we extended the QFS code to make the chunk size con-

figurable; QFS uses a fixed chunk size of 64MB. Second,

we implemented PPR decoding operations using Jerasure

and GF-Complete [33] libraries, which were not the defaults

in QFS. Jerasure allows a configurable set of coding pa-

rameters, while the default in QFS only supports the (6, 3)

code. Third, we augmented the Meta-Server with the RM

to calculate decoding coefficients, create a repair plan, and

distribute it to Chunk Servers. The RM also keeps track

of the cached chunks at Chunk Servers. Fourth, the Chunk

Server’s state machine was modified to incorporate the PPR



protocol to communicate with the peers and the RM, and

search for a chunk in its memory cache before attempting

to perform disk IO. Lastly, it is worthwhile to note that

our implementation of PPR-based reconstruction is fully

transparent to the end user.

7. Evaluation

In this section we evaluate our implementation of PPR on

top of QFS and compare the repair performance with QFS’s

traditional Reed-Solomon-based reconstruction technique.

Our primary metric is the reduction in repair time. We also

layer PPR on top of two other popular and practical erasure

codes, namely LRC [22] and Rotated RS [24], and evaluate

the effectiveness of PPR when used with these codes.

Experimental setup: We use two OpenStack [4] clusters—

a 16 host lab cluster (SMALLSITE) and an 85 host pro-

duction cluster (BIGSITE), to demonstrate the scalability

advantages of PPR. In SMALLSITE, each machine belongs

to one rack and has 16 physical CPU cores with 24GB

RAM. Each core operates at 2.67GHz. They are connected

to a 1Gbps network. Each VM instance runs Ubuntu 14.04.3

with four vcpus, 8GB memory, and 80GB of storage space.

In BIGSITE, the machines have dual 10-core 2.8GHz CPUs

and are connected by two bonded 10G NICs, with each NIC

going to an independent ToR (Top-of-Rack) switch. How-

ever, an iperf test showed an average bandwidth of about

1.4Gbps between any two VMs (such lower than expected

bandwidth is due to the well-know VxLAN issues, which

we do not discuss here for brevity). For both proactive repair

and degraded read experiments on the SMALLSITE, we kill

a single Chunk Server, which affects a small number of

chunks. For each experiment, we report the mean values

computed from 20 runs. We measure repair time on the RM

as the difference between the time when it starts a repair

process and the time when it is notified by a completion

message sent from the repair site. For degraded reads, we

measure the latency as the time elapsed from the time instant

when a client posts a read request to the time instant when it

finishes reconstructing the lost chunk(s).

7.1 Performance improvement with main PPR

7.1.1 Improving regular repair performance

Fig. 7a illustrates the percentage reduction in the repair time

achieved by PPR compared to the baseline traditional RS

repair technique, for four different codes: (6, 3), (8, 3), (10,

4), and (12, 4), each with chunk sizes of 8MB, 16MB,

32MB, and 64MB. PPR reduces the repair time quite sig-

nificantly. For a higher value of k the reduction is even

higher and reaches up to 59%. This is mainly because in

PPR the network transfer time increases with log(k), as

opposed to increasing linearly in k as in the traditional RS

repair (Sec. 4.2). Another interesting observation is that PPR

becomes more attractive for higher chunk sizes. To investi-

gate this further, we performed an experiment by varying

the chunk size from 8MB to 96MB for the (12, 4) RS code.

Fig. 7b illustrates that the benefit of PPR is higher at higher

chunk sizes, e.g., 53% at 8MB while 57% at 96MB. This

is because as the chunk size grows, it increases the network

pressure on the link connected to the repair site, leading to a

higher delay. PPR can alleviate such a situation through its

partial and parallel reconstruction mechanism. It should be

noted that many practical storage systems use big chunks so

that relevant objects (e.g., profile photos in a social network-

ing applications) can be contained within a single chunk,

thereby avoiding the need to fetch multiple chunks during

user interaction.

7.1.2 Improving degraded read latency

Recall that a degraded read happens when a user submits a

read request for some data that is currently unavailable. As

a result, the requested chunk must be reconstructed on the

fly at the client before the system replies to the user request.

Fig. 7c illustrates how PPR can drastically reduce the de-

graded read latency for four common RS coding parameters:

(6, 3), (8, 3), (10, 4), and (12, 4), and for two different chunk

sizes: 8MB and 64MB. Fig. 7c shows that the reduction in

the degraded read latency becomes more prominent for the

codes with higher values of k. Moreover, it is also noticeable

that at a higher chunk size PPR provides even more benefits

because of the reason discussed in Section 7.1.1.

7.2 Improving degraded reads under constrained

bandwidth

PPR not only reduces the reconstruction time but also

reduces the maximum amount of data transferred to any

Chunk Server or a Client involved in the reconstruction

process. In a PPR-based reconstruction process, a partici-

pating Chunk Server needs to transfer only ⌈(log2(k + 1))⌉
number of chunks over its network link, as opposed to k
number of chunks in a traditional repair. This becomes

a desirable property when the network is heavily loaded

or under-provisioned. In the next experiment, we use the

Linux traffic control implementation (tc) to control the

network bandwidth available to all the servers and measure

the degraded read throughput. As shown in Fig. 7d, as we

decrease the available bandwidth from 1Gbps to 200Mbps,

the degraded read throughput with the traditional RS recon-

struction rapidly drops to 1.2MB/s and 0.8MB/s for RS(6,

3) and RS(12, 4), respectively. Since, network transfers are

distributed in PPR, it achieves higher throughput—8.5MB/s

and 6.6MB/s for RS(6, 3) and RS(12, 4), respectively. With

a relatively well-provisioned network (1Gbps), the gains of

PPR are 1.8X and 2.5X , while with the constrained band-

width (200Mbps), the gains become even more significant,

almost 7X and 8.25X .

7.3 Benefit from caching

In this section we evaluate the individual contribution of

the distributed reconstruction technique and caching mecha-



(a) Percentage reduction in repair time with

PPR over baseline Reed-Solomon code for

different chunk sizes and coding parameters

(b) Traditional repair vs. PPR using RS (12,

4) code. PPR’s benefit becomes more obvi-

ous as we increase the chunk size

(c) Improvement in degraded read latency

(d) Degraded read throughput under con-

strained bandwidth

(e) Percentage reduction: PPR without

chunk caching vs. PPR with chunk caching.

The baseline is standard RS code.

(f) Improved computation time during recon-

struction

Figure 7: Performance evaluation on SMALLSITE with a small number of chunk failures

nism to the overall benefit of PPR. The former reduces the

network transfer time, while the latter reduces the disk IO

time. Fig. 7e shows that chunk caching is more useful for

lower values of k (e.g., (6, 3) code). For higher values of

k or for higher chunk sizes, the benefit of caching becomes

marginal because the improvement in the network transfer

time dominates that of the disk IO time. For instance, for

k = 12 and 64MB chunk size, the caching mechanism

provides only 2% additional savings in the total repair time.

However, the caching mechanism can reduce the demand on

disk IO, making it available for other workloads. Knowing

the exact access patterns of data chunks will help us identify

better caching strategies and choose the right cache size. We

leave such exploration in realistic settings for future work.

7.4 Improvement in computation time

Now we compare PPR’s computation to the serial com-

putation in a traditional RS reconstruction, i.e., a default

QFS implementation with the Jerasure 2.0 library [33]. Note

that during reconstruction, either decoding (when a data

chunk is lost) or encoding (when a parity chunk is lost)

can happen (Fig. 3b). The amounts of computation required

by RS encoding and decoding are almost identical [34].

The only difference is the extra matrix inversion involved

in decoding. During our experiments we randomly killed

a Chunk Server to create an erasure. Since, for the codes

we used, there are more data chunks than parity chunks

(k > m), decoding happens with higher probability than

encoding. We report the average numbers and do not explic-

itly distinguish based on the type of the lost chunk. Fig. 7f

shows that PPR can significantly speed up the computation

time using its parallelism. These gains are consistent across

different chunk sizes. Moreover, the gain is higher for higher

values of k because the critical path in PPR needs fewer

multiplications and XOR operations compared to traditional

decoding. Existing techniques to reduce computation time

for erasure codes using GPUs [15] or hardware acceleration

techniques [11, 23] are complementary to PPR. They can

serve as drop-in replacements to the current Jerasure library

used by PPR. However, it should be noted, repair in erasure-

coded storage is not a compute-bound task, but a network-

bound task. Nevertheless, PPR helps to reduce the overall

computation time.

7.5 Evaluation with simultaneous failures (m-PPR)

In this section we evaluate the effectiveness of m-PPR in

scheduling multiple repairs caused by simultaneous chunk

failures. We control the number of simultaneous chunk fail-

ures by killing the appropriate number of Chunk Servers. We

performed this experiment in the BIGSITE, where we placed

the Meta-Server and the Client on two hosts and ran 83

Chunk Servers on the rest. The coding scheme was RS(12, 4)

with 64MB chunks. Fig. 8 shows that our technique provides

a significant reduction (31%–47%) in total repair time com-



Figure 8: Comparison of total repair time for simultaneous

failures triggered by Chunk Server crash

pared to the traditional RS repair. However, the benefit seems

to decrease with a higher number of simultaneous failures.

This is because, in our testbed configuration, the network

links to the host servers that are shared between multiple

repairs tend to get congested for large number of failures.

Consequently m-PPR has less flexibility in choosing the

repair servers. If the testbed has more resources (more hosts,

higher network capacity, etc.), m-PPR will perform much

better for the scale of simultaneous failures considered in our

experiments. However, it should be noted that the main PPR

technique does not reduce the total amount of data trans-

ferred over the network during repair. Rather it distributes

the network traffic more uniformly across network links. For

a large number of simultaneous failures, if the repair sites are

spread across the data center, m-PPR would provide reduced

benefit compared to the single failure case. This is because

the simultaneous repair processes on multiple nodes already

spread the network traffic more evenly compared to the case

of a single failure. Overall, the result validates that m-PPR

can effectively handle multiple repairs and minimizes the

competition for shared resources (e.g., network and disk) for

a moderate number of simultaneous failures.

7.6 Scalability of the Repair-Manager

The Repair-Manager (RM) creates and distributes a repair

plan to a few Chunk Servers that are selected as the aggre-

gators. We investigate if the RM can become the bottleneck

at large scale. As detailed in Sec. 5, the m-PPR schedul-

ing algorithm has a time complexity of O(Nlog(N)) for

scheduling each repair, where N is the number of possible

destination servers. N is usually a small fraction of the

total number of machines in the data center. Additionally,

to handle a data chunk failure, RM computes the decoding

coefficients, which involves a matrix inversion. Following

this, RM sends (1 + k
2 ) messages to distribute the plan to

the aggregation Chunk Servers. Not surprisingly, we observe

that the time for coefficient calculation is negligible. Specif-

ically for RS (6, 3) and (12, 4) codes, we measured the time

period between the instant when the plan is created to the

instant when the RM finishes distributing the plan for a sin-

gle repair. It took on average 5.3ms and 8.7ms respectively.

Thus for the two coding schemes, one instance of the RM

is capable of handling 189 repairs/sec and 115 repairs/sec,

respectively. Further, as discussed in Sec. 5, the planning

capability can be easily parallelized by using multiple RM

instances, each of which can handle disjoint sets of repairs.

7.7 Compatibility with other repair-friendly codes

PPR is compatible with most of the existing erasure coding

techniques. Its applicability is not limited to only RS codes.

We demonstrate its compatibility by applying it on top of

two popular erasure coding techniques—Local Reconstruc-

tion Code (LRC) [22] and Rotated RS code [24]. These are

the state-of-the-art codes targeted for reducing the repair

time.

Figure 9: PPR repair technique can work with LRC and

Rotated RS and can provide additional improvement in

repair time

Improvements over LRC code: Huang et al. introduced

Local Reconstruction Code (LRC) in Windows Azure Stor-

age to reduce the network traffic and disk IO during the

reconstruction process [22]. LRC stores additional local par-

ities for subgroups of chunks, thereby increasing the storage

overhead for comparable reliability. For example, a (12, 2,

2) LRC code uses two global parities and two local pari-

ties, one each for a subgroup of six chunks. If one chunk

in a subgroup fails, LRC needs only six other chunks to

reconstruct the original data compared to 12 in RS (12, 4)

code. Papailiopoulos et al. [31] and Sathiamoorthy et al. [42]

also proposed Locally Repairable Codes that are concep-

tually similar. For our experiments, we emulated a (12, 2,

2) LRC code that transfers six chunks over the network, in

the best case, to one Chunk Server in order to reconstruct a

missing chunk. Then we applied PPR-based reconstruction

technique for LRC to create LRC+PPR.

In LRC+PPR only three chunks are transferred over any

particular network link. In Fig. 9, for a 64MB chunk size,

PPR-based reconstruction on (12, 4) RS code was faster than

a (12, 2, 2) LRC code reconstruction because the maximum

number of chunks that must go through any particular net-

work link is only 4C for PPR as opposed to 6C in case

of LRC, where C is the chunk size. More interestingly,

LRC+PPR version performs even better resulting in 19%

additional reduction, compared to using LRC alone. Even

in the worst case, for the LRC+PPR only three chunks are

transferred over any particular network link.



Improvements over Rotated RS code: Khan et al. [24]

proposed Rotated RS code that modifies the classic RS code

in two ways: a) each chunk belonging to a single stripe

is further divided into r sub-chunks and b) XOR on the

encoded data fragments are not performed within a row but

across adjacent rows. For Rotated RS code, the repair of r
failed chunks (called “fragments” in [24]), requires exactly
r
2 (k + ⌈( k

m
)⌉) other symbols when r is even, compared to

r × k data fragments in the RS code. On an average, for a

RS(12, 4) code and r = 4 (as used by the authors [24]),

the reconstruction of a single chunk requires approximately

nine other chunks, as opposed to 12 chunks in traditional

RS codes. However, the reconstruction is still performed

after gathering all the necessary data on a single Chunk

Server. As can be observed from Fig. 9, PPR with RS code

outperforms Rotated RS. Moreover, the combined version

Rotated RS+PPR performs even better and results in 35%
additional reduction compared to the traditional RS repair.

7.8 Discussion

It is worthwhile to discuss whether emerging technologies,

such as the zero-copy-based high throughput networks

(e.g., Remote Direct Memory Access (RDMA)), would

remove the network bottleneck. However, it should be noted

that other system components are also getting better in

performance. For example, Non-Volatile Memory Express

(NVMe) and hardware-accelerator-based EC computation

have the potential to make the non-network components to

be even faster. Moreover, application data is likely to grow

exponentially putting even more pressure on the future data

center network. Thus, techniques like PPR that attempt to

reduce the network bottleneck would still be relevant.

8. Related Work

Quantitative comparison studies have shown that EC has

lower storage overhead than replication while providing bet-

ter or similar reliability [41, 48]. TotalRecall [12] dynami-

cally predicts the availability level of different files and ap-

plies EC or replication accordingly. Publications from Face-

book [29] and Microsoft [22] discuss the performance opti-

mizations and fault tolerance of their EC storage systems.

A rich body of work targets the reconstruction problem

in EC storage. Many new codes have been proposed to re-

duce the amount of data needed during reconstruction. They

achieve this either by increasing the storage overheads [18,

22, 31, 37], or under restricted scope [21, 24, 47, 51]. We

have already covered the idea behind Local Reconstruc-

tion Codes [22] and the conceptually identical Locally Re-

pairable Codes [31, 42] when presenting our evaluation of

PPR coupled with these codes. The main advantage of our

technique compared to these is that PPR neither requires

additional storage overhead nor mandates a specific coding

scheme. Moreover, our technique is fully compatible with

these codes and can provide additional benefits if used to-

gether with them, as shown in our evaluation. Another body

of work suggests new coding schemes to reduce the amount

of repair and IO traffic, but comes with restricted settings.

Examples are Rotated RS [24] and Hitchhiker [38]. Yet

another class of optimized recovery algorithms are EVEN-

ODD [51] and RDP codes [47]. However, they support only

two parities, making them less useful for many systems [38].

In contrast, PPR can work with any EC code.

In a different context, Silberstein et al. [44] proposed

that delaying repairs can lead to bandwidth conservation and

marginally increases the performance of degraded reads as

well. However, such a policy decision will not be applicable

to many scenarios because it puts the reliability of the data

at risk. Xia et al. [50] proposed a hybrid technique using

two different codes in the same system, i.e., a fast code and

a compact code. They attempted to achieve faster recovery

for frequently accessed files using the fast code, and to get

lower storage overhead for the less frequently accessed files

using the compact code. This technique is orthogonal to

our work, and PPR can again be used for both fast and

compact codes to make reconstruction faster. In the context

of reliability in replicated systems, Chain Replication [46]

discusses how the number of possible replica sets affects

the data durability. Carbonite [16] explores how to improve

reliability while minimizing replica maintenance under tran-

sient failures. These are orthogonal to PPR. Lastly, several

papers evaluate advantages of deploying EC in distributed

storage systems. OceanStore [25, 40] combines replication

and erasure coding for WAN storage to provide highly scal-

able and durable storage composed of untrusted servers.

9. Conclusion

In this paper we present a distributed reconstruction tech-

nique called PPR, for erasure coded storage. This achieves

reduction in the time needed to reconstruct missing or cor-

rupted data chunks, without increasing the storage require-

ment or lowering data reliability. Our technique divides the

reconstruction into a set of partial operations and schedules

them in parallel using a distributed protocol that overlays

a reduction tree to aggregate the results. We introduce a

scheduling algorithm called m-PPR for handling concurrent

failures that coordinates multiple reconstructions in parallel

while minimizing the conflict for shared resources. Our ex-

perimental results show PPR can reduce the reconstruction

time by up to 59% for a (12, 4) Reed-Solomon code and

can improve the degraded read throughput by 8.25X, which

can be directly perceived by the users. Our technique is

compatible with many existing codes and we demonstrate

how PPR can provide additional savings on latency when

used with other repair-friendly codes.
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